IGF-1 decreases portal vein endotoxin via regulating intestinal tight junctions and plays a role in attenuating portal hypertension of cirrhotic rats

نویسندگان

  • Tian-Yu Zhao
  • Li-Ping Su
  • Chun-Ye Ma
  • Xiao-Han Zhai
  • Zhi-Jun Duan
  • Ying Zhu
  • Gang Zhao
  • Chun-Yan Li
  • Li-Xia Wang
  • Dong Yang
چکیده

BACKGROUND Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. METHODS We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. RESULTS Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. CONCLUSIONS Tight junction dysfunction develops during the development of liver cirrhosis, and endotoxemia will develop subsequently. Correspondingly, increased endotoxin in portal system worsens tight junction dysfunction via decreasing intestinal occludin and claudin-1 expressions and increasing enterocytic apoptosis. Endotoxemia and intestinal barrier dysfunction form a vicious circle. External administration of IGF-1 breaks this vicious circle. Improvement of tight junctions might be one possible mechanism of the restoration of intestinal barrier function mediated by IGF-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minocycline attenuates cirrhotic cardiomyopathy and portal hypertension in a rat model: Possible involvement of nitric oxide pathway

Objective(s): An increase in nitric oxide (NO) production has been reported in cirrhotic cardiomyopathy and, portal hypertension. Since minocycline has been shown to inhibit NO overproduction, we aimed to examine its role in a rat model of CCl4-induced cirrhotic cardiovascular complications. Materials and Methods: Portal pressure and inotropic responsiveness of isolated papillary muscles to is...

متن کامل

LIVER DISEASE In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats

Background: Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl4) cirrhotic rat liver. Aims: T...

متن کامل

Insulin-like growth factor I improves intestinal barrier function in cirrhotic rats.

BACKGROUND AND AIMS In liver cirrhosis, disruption of the intestinal barrier facilitates bacterial translocation and spontaneous bacterial peritonitis. Insulin-like growth factor I (IGF-I) is an anabolic hormone synthesised by hepatocytes that displays hepatoprotective activities and trophic effects on the intestine. The aim of this study was to investigate the effect of IGF-I on intestinal bar...

متن کامل

In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats.

BACKGROUND Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl(4)) cirrhotic rat liver. AIMS...

متن کامل

Novel Rat Model of Repetitive Portal Venous Embolization Mimicking Human Non-Cirrhotic Idiopathic Portal Hypertension

BACKGROUND Non-cirrhotic idiopathic portal hypertension (NCIPH) is characterized by splenomegaly, anemia and portal hypertension, while liver function is preserved. However, no animal models have been established yet. This study assessed a rat model of NCIPH and characterized the hemodynamics, and compared it to human NCIPH. METHODS Portal pressure (PP) was measured invasively and coloured mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015